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Question 1. (Start a new page.) (20 marks) 
 
 
  Marks

(a) For the complex number z 1 3i   find: 
 

 3 

  (i) |z|  
 
 
 (ii) arg z. 
 
 

 (iii) 
z

i
 

 
 
 

 

(b) Express the following in the form a + ib (for real a and b). 
 

 (i) 65i  4  i   
 
 

 (ii) 
2 3i

3 4i
 

 
 
 

 2 

(c) Find the square roots of 9 40i , giving your answers in the form x + iy. 
 
 
 
 

Question 1 continues on the next page. 

 2 
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(d) Sketch (on separate diagrams) the region in the Argand diagram containing the 
points z for which: 

 

 (i) 

4
 arg(z) 


2

 and z 1 3i  2  

 

 (ii) arg
z 2i

z2









 


4

 

 
 

 4 

(e)  (i) Express 1 + i in modulus-argument form.  
 

 (ii) Given that  1 ,
n

i x iy    where x and y are real, and n is  

an integer, prove that 2 2 2nx y   
 
 
 

 1 
 
 
 2 

(f) Which complex numbers are the reciprocals of their conjugates? 
 
 
 

 1 

(g) Consider the function ݕ ൌ 2 cosିଵሺݔଶ െ 1ሻ. 
 
 (i) Determine the domain and range of the function. 
 
 (ii) Sketch the graph of the function showing important features. 
 
 (iii) Find the derivative of the function and state the values of x for which it is 

defined. 
 
 
 
 

 5 
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Question 2. (Start a new page.) (20 marks) 
 
  Marks

(a) The points O, I, Z, and P on the Argand diagram represent the complex numbers 0, 
1, z , and z1respectively, where z  cos  isin is any complex number of 
modulus 1, and 0    . 
 
 (i) Explain why OIPZ is a rhombus. 
 

 (ii) Show that 
z1

z1
 is purely imaginary. 

 
 (iii) Find the modulus of z1 in terms of  . 
 
 
 

 4 

(b) Differentiate sin 2x x , and hence find cos 2x x dx .  2 

  
 

 

(c) Given that 2 i  is a root of the equation x4  6x3 10x2 2x  15 0: 
 
 (i) state another complex (non-real) root, giving a reason. 
  
 (ii) find all roots of the equation. 
 
 (iii) write the equation in fully factored form over the complex field. 
 
 

 5 

   
(d) Consider the functions ݕ ൌ െcosିଵ ቀ௫

ଶ
ቁ and ݕ ൌ ଵ

ଶ
tanିଵሺݔሻ െ గ

ଶ
. 

 
 (i) Show that the graphs of these functions intersect on the y-axis. 
 
 (ii) Show that the graphs have a common tangent at the point of intersection, 

and write the equation of this tangent. 
 

 4 

   
 
(e) Given the quadratic equation ݔଶ െ ݔ െ 3 ൌ 0 with roots 1 2,   : 

 
 (i) Show that  ݔସ ൌ ݔ7  12. 
 
 (ii) Hence or otherwise find a quadratic equation with roots ߙଵ

ସ and ߙଶ
ସ. 

 5 
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Question 3. (Start a new page.) (20 marks) 
 
  Marks

(a)  (i) Find the five roots of the equation 5 1z  . Give the roots in modulus-
argument form. 

 

 2 

  (ii) Show that 5 1z   can be factorised in the form : 
 

  5 2 22 4
1 ( 1)( 2 cos 1)( 2 cos 1)

5 5
z z z z z z

 
        

 

 (iii) Hence show that 
2 4 1

cos cos
5 5 2

 
   ,   and hence find the exact value 

of cos
2
5

. 

 
 

 2 
 
 
 
 
 
 3 

(b) When a polynomial P(x) is divided by x 2 and by x 3the remainders are 4 and 9 

respectively. Find the remainder when ( )P x  is divided by x 2  x 3  . 
 
 
 

 2 

(c) Ten people, consisting of three couples and four singles are to be seated randomly at 
a round table. 
 
 (i) How many arrangements are possible? 
 
 (ii) What is the probability (as a simplified fraction) that all three couples are 

seated as couples, separated from other couples by one or two singles?  
 
 

 3 

    
(d) Prove that the polynomial equation  ܽݔସ  ݔܾ  ܿ ൌ 0 , where a, b, and c are non-

zero, cannot have a triple root. 
 

  1     

  
 

 

(e) Use the substitution 2sinx  , or otherwise, to evaluate 
23

21 4

x
dx

x . 
 3 
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(f) 
 
 

In the triangle ABC , AD  is the perpendicular from A  to BC . The point E  is any 
point on AD , and the circle drawn with AE  as diameter cuts AC at F and AB at G
. 
 
 
      B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 4 

  (i) Copy the diagram to your answer booklet. 
 

  

  (ii) Prove that B, G, F, and C are concyclic.   
 
 
 

This is the end of the paper. 

A  F

E
D

G  

C  
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STANDARD INTEGRALS 

 
1

2

1
2 2

2 2

1
, 1; 0,if 0

1
1

ln , 0

1
, 0

1
cos sin , 0

1
sin cos , 0

1
sec tan ,

1
sec tan sec , 0

1 1
tan , 0

1

n n

ax ax

x dx x n x n
n

dx x x
x

e dx e a
a

axdx ax a
a

axdx ax a
a

axdx ax
a

ax ax dx ax a
a

x
dx a

a x a a

dx
a x


















































    


 

 

 

  



 

 




 
 

1

2 2

2 2

2 2

2 2

sin , 0,

1
ln , 0

1
ln

NOTE: ln log , 0e

x
a a x a

a

dx x x a x a
x a

dx x x a
x a

x x x















    

    


  


 

 

 
 
 











2014 Extension 2 Mathematics Task 1:
Solutions— Question 2

2. (a) 4The points O, I, Z, and P on the Argand diagram represent the complex
numbers 0, 1, z, and z +1 respectively, where z = cos θ+ i sin θ is any complex
number of modulus 1, and 0 < θ < π.
(i) Explain why OIPZ is a rhombus.

Solution: Method 1—

ℜ

ℑ

O

Z P

I

|OI| = 1, |OZ| = 1,
|ZP | = |z + 1 − z|, |IP | = |z + 1 − 1|,

= |1|, = |z|,
= 1. = 1.

∴ OIPZ is a rhombus (equal sides).

Solution: Method 2—

ℜ

ℑ

O

Z P

I

|OI| = |ZP | = 1 by construction,
OI ‖ ZP ,
∴ OIPZ is a parallelogram (opp. sides equal and parallel),
|OI| = |OZ| = 1 (given),
∴ OIPZ is a rhombus.

(ii) Show that
z − 1

z + 1
is purely imaginary.

Solution: Method 1—
Consider the diagonals of the rhombus OIPZ:

OP = z + 1,
IZ = z − 1,

arg(z − 1) − arg(z + 1) =
π

2
, (OP ⊥ IZ, diagonals of rhombus)

i.e., arg

(

z − 1

z + 1

)

=
π

2
.

So
z − 1

z + 1
must lie on the imaginary axis and is purely imaginary.



Solution: Method 2—
z − 1

z + 1
× z + 1

z + 1
=

zz + z − z − 1

zz + z + z + 1
,

=
1 + 2i sin θ − 1

1 + 2 cos θ + 1
,

=
2i sin θ

2 + 2 cos θ
,

=
i sin θ

1 + cos θ
, which is purely imaginary.

Solution: Method 3—

If
z − 1

z + 1
is purely imaginary, then

z − 1

z + 1
+

(

z − 1

z + 1

)

= 0.

L.H.S. =
z − 1

z + 1
+

z − 1

z + 1
,

=
zz + z − z − 1 + zz + z − z − 1

zz + z + z + 1
.

But zz = |z|2 = 1,

so L.H.S. =
0

z + z + 2
,

= 0,
= R.H.S.

Solution: Method 4—
cos θ + i sin θ − 1

cos θ + i sin θ + 1
× cos θ − i sin θ + 1

cos θ − i sin θ + 1

=
cos2 θ − i sin θ cos θ + cos θ + i sin θ cos θ + sin2 θ + i sin θ − cos θ + i sin θ − 1

cos2 θ − i sin θ cos θ + cos θ + i sin θ cos θ + sin2 θ + i sin θ + cos θ − i sin θ + 1

=
2i sin θ

2 + 2 cos θ
,

=
i sin θ

1 + cos θ
, which is purely imaginary.

Solution: Method 5—
x − 1 + iy

x + 1 + iy
× x + 1 − iy

x + 1 − iy
=

x2 + x − ixy − x − 1 + iy + ixy + iy + y2

(x + 1)2 + y2
,

=
x2 + y2 − 1 + 2iy

(x + 1)2 + y2
.

But x2 + y2 = 1 (i.e. |z|2),
so

z − 1

z + 1
=

2iy

(x + 1)2 + y2
, which is purely imaginary.



Solution: Method 6—
z − 1

z + 1
=

cos θ + i sin θ − 1

cos θ + i sin θ + 1
,

=
1 − 2 sin2 θ

2
+ 2i sin θ

2
cos θ

2
− 1

2 cos2 θ
2
− 1 + 2i sin θ

2
cos θ

2
+ 1

,

=
−2 sin θ

2

(

sin θ
2
− i cos θ

2

)

2 cos θ
2

(

cos θ
2

+ i sin θ
2

) ,

=
i sin θ

2

(

cos θ
2

+ i sin θ
2

)

cos θ
2

(

cos θ
2

+ i sin θ
2

) (as − 1 = i2),

= i tan θ
2

which is purely imaginary.

(iii) Find the modulus of z + 1 in terms of θ.

Solution: |z + 1|2 = (z + 1)(z + 1),
= 2 + 2 cos θ as above,

∴ |z + 1| =
√

2(1 + cos θ) ,

=

√

2 × 2 cos2
θ

2
,

= 2 cos
θ

2
.

(b) 2Differentiate x sin 2x, and hence find

∫

x cos 2x dx.

Solution:
d

dx
(x sin 2x) = sin 2x + 2x cos 2x,

i.e., 2x cos 2x =
d

dx
(x sin 2x) − sin 2x.

∫

2x cos 2x dx = x sin 2x −
∫

sin 2x dx,

= x sin 2x +
cos 2x

2
+ C.

So

∫

x cos 2x dx =
x sin 2x

2
+

cos 2x

4
+ C.

Alternatively,

∫

2x cos 2x dx = x sin 2x −
∫

2 sin x cos x dx,

= x sin 2x − sin2 x + C.

So

∫

x cos 2x dx =
x sin 2x − sin2 x

2
+ C.

(c) 5Given that 2 − i is a root of the equation x4 − 6x3 + 10x2 + 2x − 15 = 0:

(i) state another complex (non-real) root, giving a reason.

Solution: 2 + i, as polynomials with real coefficients have their
complex roots occurring in conjugate pairs.



(ii) find all the roots of the equation.

Solution: Method 1—
Possible other roots are ±1, ±3, ±5.

P(1) = 1 − 6 + 10 + 2 − 15,
6= 0.

P(−1) = 1 + 6 + 10 − 2 − 15,
= 0.

P(3) = 81 − 162 + 90 + 6 − 15,
= 0.

∴ The roots are 2 ± i, −1, and 3.

Solution: Method 2—
(x − 2 − i)(x − 2 + i) = x2 − 4x + 4 + 1,

= x2 − 4x + 5.

x2 − 2x − 3

x2 − 4x + 5
)

x4 − 6x3 + 10x2 + 2x − 15
− x4 + 4x3 − 5x2

− 2x3 + 5x2 + 2x
2x3 − 8x2 + 10x

− 3x2 + 12x − 15
3x2 − 12x + 15

0
x2 − 2x − 3 = (x − 3)(x + 1)
∴ The roots are 2 ± i, −1, and 3.

(iii) write the equation in fully factored form over the complex field.

Solution: (x + 1)(x − 3)(x − 2 − i)(x − 2 + 1) = 0.

(d) 4Consider the functions y = − cos−1
(

x
2

)

and y = 1

2
tan−1(x) − π

2
.

(i) Show that the graphs of these functions intersect on the y-axis.

Solution: For y = − cos−1
(

x
2

)

, Domain : −1 6
x
2

6 1,
−2 6 x 6 2.

Range : −π 6 y 6 0.

When y = 0, x = −π

2
.

For y = 1

2
tan−1(x) − π

2
, Domain : x ∈ R,

Range : −π
4
− π

2
< y < π

4
− π

2
,

−3π
4

< y < −π
4
,

When y = 0, x = −π

2
.



x

y

−2 2

O

−π
4

−π
2

−3π
4

−π

From the common point (0,−π
2
) and the sketch, it is clear that the curves

have their intersection on the y-axis.

(ii) Show that these graphs have a common tangent at the point of intersection,
and write the equation of this tangent.

Solution: y = − cos−1
(

x
2

)

, y = 1

2
tan−1(x) − π

2
,

dy

dx
= −1

2
× −1

√

1 − x2

4

,
dy

dx
=

1

2
× 1

x2 + 1
,

=
1√

4 − x2
. When x = 0,

dy

dx
=

1

2
.

When x = 0,
dy

dx
=

1

2
.

∴ The tangents have a common slope and a common point,
i.e., a common tangent.
y −

(

− π
2

)

= 1

2
(x − 0),

2y + π = x,

x − 2y − π = 0 is the equation of the common tangent.

(e) 5Given the quadratic equation x2 − x − 3 = 0 with roots α1, α2:

(i) Show that x4 = 7x + 12.

Solution: x2 = x + 3,
x4 = x2 + 6x + 9,

= (x + 3) + 6x + 9,
= 7x + 12.



(ii) Hence or otherwise find a quadratic equation with roots α4

1
and α4

2
.

Solution: Method 1—
Put y = x4, i.e., x = y

1/4,

y = 7y1/4 + 12,

y
1/4 =

y − 12

7
.

0 =

(

y − 12

7

)2

− y − 12

7
− 3,

= y2 − 24y + 144 − 7y + 84 − 147,
= y2 − 31y + 81.

So the desired equation is x2 − 31x + 81 = 0.

Solution: Method 2—
α1 + α2 = 1,

α1α2 = −3,
α4

1
= 7α1 + 12,

α4

2
= 7α2 + 12,

α4

1
+ α4

2
= 7(α1 + α2) + 24,
= 7(1) + 24,
= 31.

α4

1
α4

2
= 49α1α2 + 84(α1 + α2) + 144,
= 49(−3) + 84(1) + 144,
= 81.

∴ x2 − 31x + 81 = 0.

Solution: Method 3—
α1 + α2 = 1,

α1α2 = −3,
(α1 + α2)

2 = α2

1
+ 2α1α2 + α2

2
= 1,

α2

1
+ α2

2
= 1 − 2(−3),
= 7,

α2

1
α2

2
= 9,

(α2

1
+ α2

2
)2 = α4

1
+ 2α2

1
α2

2
+ α4

2
= 49,

α4

1
+ α4

2
= 49 − 2(9),
= 31,

α4

1
α4

2
= 81,

∴ x2 − 31x + 81 = 0.



Solution: Method 4—
Put y = x4, i.e., x = y

1/4,
(

y
1/4

)2 − y
1/4 − 3 = 0,

y
1/4 = y

1/2 − 3,
(

y
1/4

)2

=
(

y
1/2 − 3

)2

,

y
1/2 = y − 6y1/2 + 9,

(

7y1/2
)2

= (y + 9)2,

49y = y2 + 18y + 81,
0 = y2 − 31y + 81.

So the desired equation is x2 − 31x + 81 = 0.

Solution: Method 5—

α2 − α +
1

4
= 3 +

1

4
,

(

α − 1

2

)2

=
13

4
,

α − 1

2
= ±

√
13

2
,

α =
1 ±

√
13

2
,

α2 =
1 ± 2

√
13 + 13

4
,

=
14 ± 2

√
13

4
,

=
7 ±

√
13

2
,

α4 =
49 ± 14

√
13 + 13

4
,

=
62 ± 14

√
13

4
,

=
31 ± 7

√
13

2
,

α4

1
+ α4

2
= 31,

α4

1
α4

2
=

312 − 49 × 13

4
,

= 81,
∴ x2 − 31x + 81 = 0.
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